课程笔记-环论(2022-04-27~2022-05-07)
前言:在博客建好以后将近一个月,Alicia终于想起了要在博客上写笔记的计划……
SJTU抽象代数课程环论部分的笔记
基本概念(4-27)
环的定义与性质
定义
对于非空集合\(R\),在\(R\)上定义运算\(+\),\(\cdot\) 满足:
\((R1)\) \((R,+)\)是Abel群
\((R2)\) \((R,\cdot)\)是半群
\((R3)\) 左右分配律成立,即
\[ \forall a,b,c\in R, a\cdot(b+c)=a\cdot b+a\cdot c,(b+c)\cdot a=b\cdot a+c\cdot a \]
那么则称\((R,+,\cdot)\)为一个环(ring),简称\(R\)为环
补充说明
若\((R,\cdot)\) 交换,则称之为交换环,否则称非交换环。
\((R,+)\)中的单位元称为0元,记为0
\(a\)关于\(+\)的逆元称为负元,记为\(-a\)
0元、负元唯一。
若\((R,\cdot)\)有单位元,记为\(1_R\)(或1)(即\(\forall a\in R,a\cdot 1=1\cdot a=a\))称\(R\)是有单位元的环。(\((R,\cdot)\)为幺半群)
例子
\(R=\{0\}\),称\(R\)为零环(单位元和\(0\)元均为\(0\))
\((\mathbb{Z},+,\times),\) \((\mathbb{Q},+,\times),(\mathbb{R},+,\times),(\mathbb{C},+,\times)\)均成(交换)环(单位元为\(1\),零元为\(0\))
\(\mathbb{F}\)上的全矩阵环:\(\mathbb{M}_n(\mathbb{F})\)关于矩阵乘法,矩阵加法作成环,不交换(单位元\(I_n\),零元为\(0\)矩阵)
模\(n\)的剩余类环\(\mathbb{Z}_n\):定义加法:\(\overline{a}+\overline{b}=\overline{a+b}\),定义乘法:\(\overline{a}\cdot\overline{b}=\overline{ab}\)。
\((\mathbb{Z}_n,+,\cdot)\)成(交换)环
零元:\(\overline{0}\),单位元:\(\overline{1}\)
整系数多项式环\(\mathbb{Z}[x]\):\(\mathbb{Z}[x]\)关于多项式的加法和乘法成(交换)环(单位元\(f\equiv1\),零元\(0\)函数)
\([a,b]\)上的连续函数环:\(C[a,b]\)关于函数的加法和乘法成环
环的直和:\(R_1,\cdots,R_n\)为\(n\)个环,令
\(R=R_1\oplus R_2\oplus\cdots\oplus R_n=\{(a_1,a_2,\cdots,a_n)|a_i\in R_i,i=1,\cdots,n\}\)
则\(R\)关于逐项加法(各分量逐项按照\(R_i\)中的加法相加)和逐项乘法(各分量逐项按照\(R_i\)中的乘法相乘)成环。
显然\(R\)交换\(\Leftrightarrow\) \(R_i\)交换 \(i=1,\cdots,n\)
\(R\)有单位元\(\Leftrightarrow\) \(R_i\)有单位元 \(i=1,\cdots,n\)
环的性质
\(Prop:\)设\(R\)为环,则
\(0\cdot a=0=a\cdot0\quad \forall a \in R\)
\((-a)\cdot b=-(ab)=a\cdot(-b),(-a)\cdot(-b)=ab\quad\forall a,b\in R\)
\(R\)的单位元若存在则必定唯一
\(R\)的单位元若存在且\(R\)不是\(0\)环,则\(1\not=0\)
\(Proof:\)
\(0\cdot a+0\cdot a=(0+0)\cdot a=0\cdot a\) 由加法消去有\(0\cdot a=0\),同理\(a\cdot 0=0\)
\((-a)\cdot b+ab=(-a+a)\cdot=0\cdot b=0\) \(a\cdot(-b)+ab=a\cdot(-b+b)=a\cdot0=0\),从而\((-a)\cdot b=-(ab)=a\cdot(-b)\),从而\((-a)(-b)=ab\)
反证
若\(1=0\),则\(\forall 0\not=a\in R,a\cdot1=a=a\cdot0=0\),矛盾。故\(1\not=0\)
零因子
对于环\(R\),若有\(a,b\in R\quad a\not=0,b\not=0,ab=0\)
则称\(a\)为\(R\)的一个左零因子,\(b\)称为\(R\)的一个右零因子
\(R\)中有左零因子和右零因子统称有零因子
若\(R\)无零因子,称其为无零因子环,否则称有零因子环。
例子
\(\mathbb{F}\)上的全矩阵环:有零因子环
\(\mathbb{Z,Q,R,C}\):无零因子环
\(\mathbb{Z_6}\):\(\bar{2}\cdot\bar{3}=\bar{0}\) 故\(2,3\)为零因子,有零因子环
\(\mathbb{Z_5}\):无零因子环
注意:有左零因子\(\Leftrightarrow\)有右零因子,但是左(右)零因子未必是右(左)零因子,例子如下
设
\[ R=\{\left[\begin{array}{cc} 0 &0\\ x&y\\ \end{array}\right]|x,y\in \mathbb{R}\} \]
成环,求其零因子
解:\(\forall \left(\begin{array}{cc} 0 &0\\ x&y\ \end{array}\right)\)由\(\left(\begin{array}{cc}0&0\\a&0\end{array}\right)\) \(\left(\begin{array}{cc}0 &0\\x&y\\\end{array}\right)\)=\(\left(\begin{array}{cc}0 &0\\0&0\\\end{array}\right)\)
\(\therefore R\)中每个非零元都是右零因子,且\(\left(\begin{array}{cc}0&0\\a&0\\\end{array}\right),a\not=0\)是左零因子
但是\(a\not=0\),\(\small\left(\begin{array}{cc}0&0\\*&a\\\end{array}\right)\) \(\small\left(\begin{array}{cc}0&0\\x&y\\\end{array}\right)\) \(=\left(\begin{array}{cc}0&0\\ax&ay\\\end{array}\right)=\left(\begin{array}{cc}0&0\\0&0\\\end{array}\right)\Rightarrow x=0\), \(y=0\)
\(\therefore \left(\begin{array}{cc}0&0\\x&a\\\end{array}\right)\) 不是左零因子
定理
环\(R\) 中没有左(右)零因子\(\Leftrightarrow\) \(R\) 中左(右)消去成立
证明(只证明对左零因子):
\(\Rightarrow:a\not =0,ab=ac\Rightarrow a(b-c)=0 \stackrel{\because 无左零因子}{\Longrightarrow}b-c=0,b=c\)
\(\Leftarrow:\forall a\not=0,a\in R\),若\(\exists ab=0\),则\(ab=a\cdot0=0\),由左消去律有\(b=0\)
\(\therefore R\)无左零因子
单位
设\(R\)有单位元\(1\) ,\(a\in R^*\)(非零元所成的集合),若\(a\)有逆元,则称\(a\)为\(R\)的单位
记\(U(R)=\{R中所有单位\}\)
\(\forall a,b\in U(R),ab\cdot b^{-1}a^{-1}=1\Rightarrow ab\in U(R),a^{-1}\in U(R)\)
故\(U(R)\)成群,称为\(R\)的单位群
如\(U(\mathbb{Z}_6)=\{\bar{1},\bar{5}\},U(\mathbb{Z}_5)=\mathbb{Z}_5^*\)
环的分类
整环
有单位元,无零因子,交换的非零环
例子:\((\mathbb{Z},+,\times),(\mathbb{Q},+,\times),(\mathbb{C},+,\times),\mathbb{Z}[x],\mathbb{Q}[x],\mathbb{C}[x],\mathbb{Z}_p(p:prime)\)
例(高斯整环)
\(\mathbb{Z}[i]=\{a+bi|a,b\in\mathbb{Z}\}\)是整环(高斯整环),求\(\mathbb{Z}[i]\)的单位
解:设\(\alpha\in\mathbb{Z[i]},\alpha\not=0,\alpha\)为单位,\(\alpha=a+bi\).
则\(\exists x=x+yi\in\mathbb{Z[i]},s.t.\quad \alpha x=1\)有\(|\alpha|^2|x|^2=1,i.e(a^2+b^2)(x^2+y^2)=1\)
\[ \therefore a^2+b^2=1 有 \begin{cases} a=\pm1 \\ b=0 \\ \end{cases} 或 \begin{cases} a=0 \\ b=\pm1 \\ \end{cases} \]
\(U(\mathbb{Z}[i])=\{1,-1,i,-i\}\cong\mathbb{Z}_4\)
除环(体)
环\(R\not=\{0\}\) \((R^*,\cdot)\)成群,称\(R\)为除环
注:
\(R\)为除环,则\(R\)至少含有\(0,1\)
\(U(R)=R^*\)
例:\((\mathbb{Q},+,\times)\),\((\mathbb{R},+,\times),(\mathbb{C},+,\times)\)
例:设\(e=\left(\begin{array}{cc}1&0\\0&1\\\end{array}\right),i=\left(\begin{array}{cc}i&0\\0&i\\\end{array}\right),\small j=\left(\begin{array}{cc}0&1\\-1&0\\\end{array}\right),\normalsize k=\left(\begin{array}{cc}0&i\\i&0\\\end{array}\right)\)
\(H=\{a_0e+a_1i+a_2j+a_3k|a_i\in R,i=0,1,2,3\}\)
则有\(i^2=j^2=k^2=-e,ij=-ji=k,jk=-kj=i,ki=-ik=j\)
故\(H\)对矩阵乘法和加法成环
\(\forall q\in H^*,q=\left(\begin{array}{cc}u&v\\-\bar{v}&\bar{u}\\\end{array}\right)=\left(\begin{array}{cc} a_0+a_1i & a_2+a_3i\\-a_2+a_3i & a_0-a_1i\\\end{array}\right)\) (\(a_i\)不全为0)
\(q=|u|^2+|v|^2=a_0^2+a_1^2+a_2^2+a^2_3\not=0\)
故\(q\)有逆元,从而\(H\)为一个除环,非交换(实四元数环)
又称\(\text{Hamilton四元数体}\)
定理
环\(R\not=\{0\}\)有限,\(R\)无左右零因子,\(R\)为除环
证明:\((R^*,\cdot)\)半群,因满足左右消去律成群,故\(R\)为除环
域
交换的除环(即,\((R,+),(R^*,\cdot)\)均为\(\text{Abel}\)群)
例子:如\(\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Z_p}\)
具有有限个元素的域称为有限域
定理
\(\mathbb{Z_p}\)是域\(\Leftrightarrow\) \(n\) 为素数
证明:\(\Rightarrow:\) 反证,设\(n=n_1n_2,n_1,n_2>1\) 则有\(\overline{n_1},\overline{n_2}=\bar{0}\)
而\(\overline{n_1},\overline{n_2}\not=0\) 故\(\mathbb{Z}_n\)有零因子,与\(\mathbb{Z}_n\)为域矛盾
\(\therefore n\)为素数
\(\Leftarrow:\)设\(p\)为素数,从而\(\mathbb{Z}_p\not=\{\bar{0}\}\)
\(\forall \bar{k}\in\mathbb{Z}_p^*\) 由\((k,p)=1\),\(\exists a,b\in \mathbb{Z}\),使得\(ak+bp=1\),有\(\bar{a}\bar{k}=\bar{1}\).
故\(a\)有逆元,\(\bar{1}\in \mathbb{Z}_p\) .从而\((\mathbb{Z_p^*},\cdot)\)成群且交换,故\(\mathbb{Z}_p\)为域
注:\(\mathbb{Z}_p\)是最简单的有限域
推论
有限整环是域
子环和子域(4-29)
定义
设\((R,+,\cdot)\)是一个环(域),\(\emptyset \not =S \subset R\) ,若\(S\)关于\(R\)的运算构成环(域),称\(S\)为\(R\)的子环(域)。
注:
由定义,\(S\)为\(R\)的子环,则\((S,+)\)为\((R,+)\)的子加群。
R中的0元是S中的0元,S中元的负元是在R中的负元
\(S\)为\(R\)的子域,则\((S,+)\)为\((R,+)\)子加群,\((S^*,\cdot)\)为\((R,\cdot)\)子乘群(Abel)群
定理1
设\(R\)为一个环,\(\emptyset\not=S\subset R\),则\(S\)为\(R\)的子环\(\Leftrightarrow\)
\((S,+)\)为\((R,+)\)的子加群
\(\forall a,b\in S, ab\in S\)
定理2
设\(R\)为一个环,\(\emptyset\not=S\subset R\),则\(S\)为\(R\)的子环\(\Leftrightarrow\)
(1)\(\forall a,b\in S,a-b\in S\quad(a+b\in S,-a\in S)\)
(2)\(\forall a,b\in S, ab\in S\)
定理3
设\(K\)为域,\(\emptyset\not=F\subset K\),则\(F\)为\(K\)的子域\(\Leftrightarrow\)
\(\forall a,b\in F, c,d\in F^*\)有\(a-b\in F,cd^{-1}\in F^*\)
如:\(\{a+b\sqrt{-1}|a,b\in \mathbb{Q}\}\subset \mathbb{C}\) 是\(\mathbb{C}\)的子域
但\(\{a+b\sqrt{-1}|a,b\in\mathbb{Z}\}\)不是\(\mathbb{C}\)的子域
例子
例1:\(\{0\},R\)均为\(R\)的子环(平凡子环)
例2:对\((\mathbb{Z},+,\times)\),\(S=\{n\mathbb{Z}\}\)是\(\mathbb{Z}\)的子环
特别的:\(2\mathbb{Z}\)是\(\mathbb{Z}\)的子环,但\(2\mathbb{Z}\)没有单位元.
例3:求\(\mathbb{Z}_{18}\)的所有子环
解:由群论已有结论\(\mathbb{Z}_{18}\)的所有子加群\(\langle\bar{1}\rangle,\langle\bar{2}\rangle,\langle\bar{3}\rangle,\langle\bar{6}\rangle,\langle\bar{9}\rangle,\langle\bar{0}\rangle\)
\(\langle\bar{1}\rangle=\mathbb{Z}_{18}\),\(\langle\bar{2}\rangle=\{\bar{0},\bar{2},\bar{4},\bar{6},\bar{8},\overline{10},\overline{12},\overline{14},\overline{16}\}\) ,\(\langle\bar{3}\rangle=\{\bar{0},\bar{3},\bar{6},\bar{9},\overline{12},\overline{15}\}\) ,\(\langle\bar{6}\rangle=\{\bar{0},\bar{6},\overline{12}\}\) ,\(\langle\bar{9}\rangle=\{\bar{0},\bar{9}\}\) 故所有的子加群即为它所有的子环,共六个.
例4:设\(R\)为环,证明\(C(R)=\{r\in R|rs=sr \quad\forall s\in R\}\)为\(R\)的一个子环(称为环\(R\)的中心)
证明:\(\because 0\in C(R)\quad \therefore \emptyset\not=C(R)\subset R\)
\(\forall r_1,r_2\in C(R) \forall s\in R\)有\((r_1-r_2)s=r_1s-r_2s=sr_1+s(-r_2)=s(r_1-r_2)\)
\(\therefore r_1-r_2\in C(R)\)
\(r_1r_2s=(r_1s)r_2=sr_1r_2\) \(\therefore r_1r_2\in C(R)\)
故\(C(R)\)为\(R\)的子环
理想,商环和环同态
理想
定义
设\(R\)为环,\(\emptyset \not =I\subset R\) ,若\(I\)满足
1.\(\forall r_1,r_2 \in I\),有\(r_1-r_2\in I\)
2.\(\forall r\in I,s \in R\)有\(rs,sr\in I\)
称\(I\)为\(R\)的一个理想(ideal).若\(I\subsetneq R\) ,称\(I\)为真理想
注:\({0}\)和\(R\)为\(R\)的平凡理想(trivial ideal).
例子
1.求\(\mathbb{Z}\)的全部理想
解:由前知,\(\mathbb{Z}\)的全部子环为\(\{m\mathbb{Z}|m=0,1,2,\cdots\}\)吸收性满足。所以其即为\(\mathbb{Z}\)的全部理想。
性质
定理1:
设\(R\)为环,\(I,J\)都是\(R\)的理想,则\(I+J,I\cap J,IJ\)均为\(R\)的理想
证明:
(i). \(I+J=\{a+b|a\in I,b\in J\}\),\(I\cap J=\{a\in R| a\in I,a\in J\}\),\(IJ=\{\sum_{i=1}^{m}a_ib_i|a_i\in I,b_i\in J\}\)
\(I+J\)为\(R\)的子加群,\(I\cap J\)为\(R\)的子加群
\(\forall r\in R,\alpha \in I+J, \alpha=a+b \quad a\in I,b\in J\)有
\[ r\alpha=r(a+b)=ra+rb \in I+J \]
同理\(\alpha r\in I+J\),故\(I+J\)为\(R\)的理想
(ii). \(\forall \alpha \in I\cap J\quad r\alpha \in I\cap J \quad \alpha r\in I\cap J\)
故\(I\cap J\)是\(R\)的理想
(iii).\(\forall \alpha,\beta\in IJ\),设\(\alpha=\sum_i a_ib_i,\beta=\sum_j c_jd_j,a_i,c_j\in I, b_i,d_j\in J\)
有\(\alpha-\beta=\sum_ia_ib_i-\sum c_jd_j=\sum_ia_ib_i+\sum(-c_j)d_j\in IJ\)
\(\forall r\in R\quad r\alpha=\sum_i(ra_i)b_i\in IJ,\alpha r=\sum_i a_i(b_ir)\in IJ\)
故\(IJ\)是\(R\)的理想
注:推广到任意有限多个,即\(\{I_i|i=1,\cdots,n\}\)均为\(R\)的理想,
则\(\sum_{i=1}^n I_i,\bigcap_i I_i,\prod_{i=1}^n I_i\)均为\(R\)的理想。
有\(\prod_{i=1}^n I_i\subset \bigcap_i I_i \subset I_i\subset \sum_{i=1}^n I_i\)
例子
在环\((\mathbb{Z},+,\cdot)\)中,设\(H=\{4k|k\in\mathbb{Z}\},N=\{6l|l\in\mathbb{Z}\}\),则\(H,N\)均为\(\mathbb{Z}\)的理想
\(H+N=\{4k+6l|k,l\in\mathbb{Z}\}=\{2m|m\in\mathbb{Z}\}\),
\(HN=\{\sum24kl|k,l\in\mathbb{Z}\}\),\(H\cap N=\{12k|k\in\mathbb{Z}\}\)
单环
定义
环\(R\),若\(R\)没有非平凡理想,则称\(R\)为单环.
推论
设\(F\)为域,则\(F\)上的全矩阵环\(M_n(F)\)是单环
证明:设\(\forall I\)是\(M_n(F)\)的理想 \(I\not=\{0\}\) 则取\(A=(a_{ij})_{n\times n}\in I,A\not=0\)
不妨设\(a_{kl}\not=0\),故有\(a^{-1}_{kl}E_{ik}AE_{li}=E_{ii}\in I\),
从而\(e=E=\sum_{i=1}^n E_{ii}\in I\) ,从而由吸收性有\(\forall B\in M_n(F),B\cdot E=B\in I\)
故\(I=M_n(F)\).从而\(M_n(F)\)为单环.
注:\(M_n(\mathbb{Z})\)整数环上的矩阵环就不是单环(取\(I=M_n(2\mathbb{Z})\)则\(I\)为\(M_n(F)\)的非平凡理想)
若\(1\in I\),则\(\forall x\in R,x\cdot1=x\in I\),\(R\)是单环(由此可知柱和域都是单环).
理想的构造
主理想
\(R\)为环,\(a\in R\),令\(\Sigma=\{包含a的R的所有理想\}\).则\(\Sigma\not=\emptyset\)
令\(\langle a\rangle=\bigcap_{I\in\Sigma} I\)则\(\langle a\rangle\)为\(R\)的理想
称为由\(a\)生成的主理想(principal ideal)
主理想的构成
定理1
设\(R\)为环,\(a\in R\),则
(i).\(\langle a\rangle=\{\sum_ix_iay_i+xa+ay+ma|x_i,y_i,x,y\in R,m\in\mathbb{Z}\}\)
(ii).若\(1\in R\),则\(\langle a\rangle=\{\sum_ix_iay_i|x_i,y_i\in R\}\)
(iii).若\(R\)交换,则\(\langle a\rangle=\{xa+ma|x\in R,m\in\mathbb{Z}\}\)
(iv).若\(R\)有单位元的交换环,则\(\langle a\rangle=\{ar|r\in R\}=aR\)
证明:
(i).式子右边记为\(I\),\(\forall J\in \Sigma,x_iay_i\in J.xa,ay,ma\in J\)
故\(I\subset J\)从而\(I\subset \bigcap_{J\in\Sigma} J\)
\(\forall b,c\in I\),明显地有\(b-c\in I,rb,br\in I\quad \forall r\in R\)
故\(I\)是\(R\)的理想(根据定义有\(\bigcap_{J\in\Sigma} J \subset I\)),\(a\in I\),从而\(I=\langle a\rangle\).
故(i)成立
(ii).若\(1\in R\),\(xa=xa\cdot 1,ay=1\cdot ay ma=m\cdot 1\cdot a=(m\cdot 1)a\cdot1\)
故\(\langle a \rangle=\{\sum_i x_iay_i|x_i,y_i\in R\}\)
(iii).若\(R\)交换,则\(x_iay_i=x_iy_ia,ay=ya\)从而
\(\langle a\rangle=\{xa+ma|x\in R,m\in \mathbb{Z}\}\)
(iv).若\(1\in R,R\)交换,故有\(ma=(m1)\cdot a=(m1)\cdot a\)
从而\(\langle a \rangle=\{xa|x\in R\}=aR=Ra\)
例子:
\((\mathbb{Z},+,\cdot)\)所有理想\(\{m\mathbb{Z}\}=\langle m\rangle\)(也是主理想)
\((\mathbb{Z}_n,+,\cdot)\)所有理想\(\langle \bar{m}\rangle\) (\(m\in \mathbb{Z}_+,m|n\))(也是主理想)
一般地,若\(S=\{a_1,\cdots,a_n\}\subset R\)
令\(\langle a_1,\cdots.a_n\rangle=\langle a_1\rangle+\langle a_2\rangle+\cdots+\langle a_n\rangle\) ,记为\(\langle S\rangle\)
称为由\(S\)生成的理想.
例子(5-7)
高斯整环\(\mathbb{Z}[i]\),求\(\langle 1+i\rangle\)
解 \(\mathbb{Z}[i]\) 有单位元的交换环,故
\(\begin{aligned}\langle 1+i\rangle&=(1+i)\mathbb{Z}[i]\\&=\{x+yi|x+yi=(1+i)(a+bi),\forall a+bi\in\mathbb{Z}[i]\}\\&=\{a-b+(a+b)i|\forall a,b\in \mathbb{Z}\}\\&=\{x+yi|x,y同奇偶\}\end{aligned}\)
例2
在\(\mathbb{Z}\)中,\(a,b\in\mathbb{Z}\),求\(\langle a,b\rangle\)
解:因为\(\mathbb{Z}\)是有单位元的交换环
\(\therefore \begin{aligned}\langle a,b\rangle &=\langle a\rangle +\langle b\rangle =\{k_1a|k_1\in\mathbb{Z}\}+\{k_2b|k_2\in\mathbb{Z}\}\\&=\{kd|d=(a,b),k\in\mathbb{Z}\}\end{aligned}\)
主理想整环
整环\(D\),若\(D\)的每个理想均为主理想,称\(D\)为主理想整环,记为\(PID\)
如:\(\mathbb{Z}\),主理想整环
(\(\mathbb{Z}_n\)不是主理想整环 因为\(n\)不是质数时\(\mathbb{Z}_n\)有零因子 不是整环)
商环
环上的商群
设\(R\)是一个环,\(I\)是\(R\)的理想,\(i.e\) \((I,+)\triangleleft(R,+)\)
商群\(R/I=\{\bar{x}=x+I|x\in R\}\)
加法:\(\bar{x}+\bar{y}=\overline{x+y}\)(已有的)
定义乘法:\(\bar{x}+\bar{y}=\overline{x\cdot y},x,y\in R\)
证明乘法well-defined:
若\(\overline{x_1}=\overline{x_2},\overline{y_1}=\overline{y_2},x_1,x_2,y_1,y_2\in R\)
有\(x_1-x_2\in I,y_1-y_2\in I\)
有\(x_1y_1-x_2y_2=x_1y_1-x_1y_2+x_1y_2-x_2y_2=x_1(y_1-y_2)+(x_1-x_2)y_2\in I\)
\(\therefore \overline{x_1y_1}=\overline{x_2y_2}\) 从而定义的乘法是\(R/I\)上的二元运算
证明\(R/I\)构成环:
\(\forall x,y,z\in R\),明显地\((\bar{x}\cdot\bar{y})\cdot\bar{z}=\overline{xy}\cdot \overline{z}=\overline{xyz}=\bar{x}\cdot\overline{yz}=\bar{x}\cdot(\bar{y}\cdot\bar{z})\)
故结合律满足
\(\bar{x}(\bar{y}+\bar{z})=\bar{x}\cdot\overline{y+z}=\overline{x(y+z)}=\overline{xy+xz}=\overline{xy}+\overline{xz}=\bar{x}\cdot\bar{z}+\bar{x}\cdot{y}\)
\((\bar{y}+\bar{z})\cdot\bar{x}=\overline{(y+z)\cdot x}=\overline{yx+zx}=\bar{y}\cdot\bar{x}+\bar{z}\cdot\bar{x}\)
分配律成立
从而\(R/I\)构成环
商环的定义
称\(R/I\)为环\(R\)关于理想\(I\)的商环
如: \(\mathbb{Z}/\langle m\rangle=\mathbb{Z}_m\)
商环的性质
设\(R\)为环,\(I\)是\(R\)的理想,则
\(\bar{0}=I\)是\(R/I\)的零元
若\(R\)有单位元\(1\)且\(1\not\in I\) 则\(\bar{1}=1+I\)为\(R/I\)的单位元
若\(R\)为交换环,则\(R/I\)交换环
证明是显然的。
例子
1.\(\mathbb{Z}[i]\),试确定\(\mathbb{Z}[i]/\langle 1+i\rangle\)
解:\(\langle 1+i\rangle=\{x+yi|x,y同奇偶\}\)
\(\forall a+bi\in\mathbb{Z}[i]\),若\(a,b\)奇偶性相同,则\(a+bi\in\langle1+i\rangle\)(即\(\bar{0}\))
\(a,b\)一奇一偶,\(a+bi=1+a-1+bi\)(\(a-1+bi\in\langle1+i\rangle\))\(\in \bar{1}\)
\(\therefore \mathbb{Z}[i]/\langle1+i\rangle=\{\bar{0},\bar{1}\}\)
2.一元多项式环\(F[x]\),\(F\)为数域
\(P(x)=a_0+a_1x+\cdots+a_nx^n,a_n\not=0\)
\(H=\langle P(x)\rangle\) 求\(F[x]/H\)
解:\(\begin{aligned}F[x]/H &=\{r(x)+\langle P(x)\rangle|r(x)\in F[x],deg(r(x))<n\}\\&=\{\overline{r(x)}|deg(r(x)<n\}\end{aligned}\)
环同态
定义
设\(R,R'\)为两个环,\(\phi:R\rightarrow R'\) 为映射
若\(\forall a,b\in R\),有
- \(\phi(a+b)=\phi(a)+\phi(b)\)
(2)\(\phi(a\cdot b)=\phi(a)\cdot\phi(b)\)
则称\(\phi\)为\(R\rightarrow R'\)的同态映射
简称\(R\)与\(R'\)的同态
注:若\(\phi\)单射,称其为单同态(嵌入)
若\(\phi\)满射,称其为满同态
单&满,同构
\(R\)到自己的同态或同构称自同态/自同构
\(\phi\)为环同构且\(R\),\(R'\)均为域,称为域同构
例子
1.\(\phi:R\rightarrow R'\),\(\forall a\in R,\phi(a)=0'\in R'\)
零同态
2.\(\begin{aligned}\phi:\mathbb{Z}&\rightarrow \mathbb{Z}_m\\a&\mapsto \bar{a}\end{aligned}\)
满射
\(\phi(a+b)=\overline{a+b}=\bar{a}+\bar{b}=\phi(a)+\phi(b)\)
\(\phi(a\cdot b)=\overline{ab}=\bar{a}\cdot\bar{b}=\phi(a)\cdot\phi(b)\)
故为满同态
性质
prop:设\(\phi:R\rightarrow R'\)环同态,则
\(Ker\phi\)是\(R\)的理想,\(Ker\phi=\{a\in R|\phi(a)=0'\}\)
\(\phi\)单同态\(\Leftrightarrow\) \(Ker\phi=\{0\}\)
满同态\(\Leftrightarrow\) \(Im\phi=R'\)
设\(I\)是\(R\)的理想,则\(\pi: R\rightarrow R/I\) \(\pi(r)=r+I,\forall r\in R\)是满同态且\(Ker \pi=I\)
证明略(同群论)
例子
1.设\(R=Q[x],R'=Q(\sqrt2)=\{a+b\sqrt2|a,b\in Q\}\)
令\(\begin{aligned}\phi:R&\rightarrow R'\\f(x)&\mapsto f(\sqrt2)\end{aligned}\) 证明\(\phi\)为满同态并且\(Ker \phi=\langle x^2-2\rangle\)
解:
由\(f(\sqrt2)\)唯一确定,知\(\phi\)为映射
\(\forall a+b\sqrt2\in R'\) ,有\(a+bx\in R=Q[x],s.t.\) \(\phi(a+bx)=a+b\sqrt2\)
故\(\phi\)为满射
\(\forall f(x),g(x)\in Q[x]\),\(\begin{aligned}\phi(f(x)+g(x))&=f(\sqrt2)+g(\sqrt2)\\&=\phi(f(x))+\phi(g(x))\end{aligned}\)
\(\phi(f(x)\cdot g(x))=f(\sqrt2)g(\sqrt2)=\phi(f(x))\phi(g(x))\)
故\(\phi\)为满同态
\(\forall f(x)\in Ker\phi,\phi(f(x))=0\)
\(f(x)=(x^2-2)q(x)+a+bx,\phi(f(x))=f(\sqrt2)=a+b\sqrt2=0\)
\(\therefore a=b=0,(x^2-2)|f(x)\)
另一方面,\(\forall f(x)=(x^2-2)q(x),\phi(f(x))=0\)
\(\therefore Ker\phi=\langle x^2-2\rangle\)
2.prop:\(\phi:\bar{1}\rightarrow \bar{a}\)为\(\mathbb{Z}_m\)到\(\mathbb{Z}_n\)的同态\(\Leftrightarrow\) \(m\bar{a}=\bar{0}\)且\({\bar{a}}^2=\bar{a}\)
证明:
\(\Rightarrow:\) \(\because \mathbb{Z}_m=\langle\bar{1}\rangle\)
\(\therefore \phi(m\cdot\bar{1})=m\phi(\bar{1})=m\bar{a}=\phi(\bar{m})=\phi(\bar{0})=\bar{0}\)
\(\phi(\bar{1}\cdot\bar{1})=\phi(\bar{1})=\phi(\bar{1})\phi(\bar{1})={\bar{a}}^2=\bar{a}\)
\(\Leftarrow:\) \(\begin{aligned}\phi:\mathbb{Z}_m&\rightarrow\mathbb{Z}_n\\\bar{x}&\mapsto\phi(\bar{x})=\phi(x\cdot\bar{1})=x\bar{a}\end{aligned}\)
在\(\mathbb{Z}_m\)中若\(\bar{x}=\bar{y}\) 则有\(m|x-y\)由\(m\bar{a}=\bar{0}\)
有\((x-y)\bar{a}=0\) 即\(n|(x-y)\bar{a}\),即\(n|x\bar{a}-y\bar{a}\)
故\(x\bar{a}=y\bar{a}\) 所以\(\phi\)为映射
\(\begin{aligned}\forall \bar{x},\bar{y}\in\mathbb{Z}_m,\phi(\bar{x}+\bar{y})&=\phi(\overline{x+y})=(x+y)\bar{a}\\&=\phi(\bar{x})+\phi(\bar{y})\end{aligned}\)
\(\begin{aligned}\phi(\bar{x}\cdot\bar{y})&=\phi(\overline{xy})=xy\bar{a}=xy\bar{a}^2=x\bar{a}\cdot y\bar{a}\\&=\phi(\bar{x})\cdot\phi(\bar{y})\end{aligned}\)
故\(\phi\)为同态
3.求\(\mathbb{Z}_4\)到\(\mathbb{Z}_{12}\)的所有环同态
\(\begin{aligned}\phi:\mathbb{Z}_4&\rightarrow\mathbb{Z}_{12}\\\bar{1}&\mapsto\bar{a}\end{aligned}\)
在\(\mathbb{Z}_{12}\)中\(4\bar{a}=\bar{0},\bar{a}^2=\bar{a},\therefore \bar{a}=\bar{0},\bar{9}\)
故\(\mathbb{Z}_4\)到\(\mathbb{Z}_{12}\)的所有环同态为\(\phi_1(\bar{x})=\bar{0},\phi_2(\bar{x})=9\bar{x}\)
环同态基本定理
同态基本定理
设\(f:R\rightarrow R'\)是环同态,则有环同构\(R/Kerf\cong Imf\)
特别的,若\(f\)为满同态,则有\(R'\cong R/Ker f\)
证明:
由同态基本定理,有:
\(\begin{aligned}\phi:R/Kerf&\rightarrow Imf\\\bar{a}&\mapsto f(a)\end{aligned}\) 为群同构
\(\forall \bar{a},\bar{b}\in R/Ker f\) 有\(\begin{aligned}\phi(\bar{a}\cdot\bar{b})&=\phi(\overline{ab})=f(ab)=f(a)f(b)\\&=\phi(\bar{a})\phi(\bar{b})\end{aligned}\)
故\(\phi\)为环同构,即\(R/Ker f\cong Imf\)
例子
1.\(\begin{aligned}\phi:\mathbb{Z}&\rightarrow \mathbb{Z}_m\\a&\mapsto\bar{a}\end{aligned}\) 满同态,\(Ker\phi=\langle m\rangle\)
故\(\mathbb{Z}/\langle m\rangle\cong Im\phi =\mathbb{Z}_m\)
2.\(\begin{aligned}\phi:Q[x]&\rightarrow Q(\sqrt2)\\f(x)&\mapsto f(\sqrt2)\end{aligned}\)
\(Ker\phi=\langle x^2-\sqrt2\rangle\)
有\(Q[x]/Ker\phi\cong Q(\sqrt2)\)
3.\(I\)为环\(R\)的理想\(\begin{aligned}\phi:M_n(R)&\rightarrow M_n(R/I)\\ (a_{ij})_{n\times n}&\mapsto (\overline{a_{ij}})_{n\times n}\end{aligned}\)满同态
\(Ker\phi=\{(a_{ij})_{n\times n}|a_{ij}\in I\}=M_n(I)\)
故\(M_n(R)/M_n(I)\cong M_n(R/I)\)
如:\(R=\mathbb{Z},I=2\mathbb{Z}\)
同构定理
第一同构定理:设\(S\)为\(R\)的子环,\(I\)为环\(R\)的理想,则\(I+S\)是\(R\)的子环,\(I\cap S\)是\(S\)的理想,且\(I+S/I\cong S/I\cap S\)
子环对应定理:设\(I\)是环\(R\)的理想,令\(\text{T}=\{S为R的子环|I\subset S\}\\\Omega=\{R/I的子环\}\)
则\(\Phi:\text{T}\to\Omega\)是双射,其中\(\Phi(S)=S/I,\forall S\in \text{T}\),特别的,\(R/I\)中任意子环形如\(S/I,I\subset S\)(S为R的子环)
第二同构定理:设\(J\)也是\(R\)的理想且\(I\subset J\),则\(J/I\)是\(R/I\)的理想,且有环同构\((R/I)/(J/I)\cong R/J\)
证明均类似群的证明。
例子
环\(\mathbb{Z}\)中,\(m,n\in\mathbb{Z}\), \(I=\langle m \rangle,s=\langle n\rangle\)
则\(I+S=\langle m\rangle+\langle n\rangle=\langle (m,n)\rangle\),\(I\cap S=\langle[m,n]\rangle\),
有\((I+S)/I\cong S/(I\cap S)\),即\((m,n)\mathbb{Z}/m\mathbb{Z}\cong n\mathbb{Z}/[m,n]\mathbb{Z}\)
如\(m=4,n=6\)
左边\(=\{\bar{0},\bar{2}\}\),右边\(=\{\bar{0},\bar{6}\}\)
\(|左|=\frac{jm}{(m,n)}=\frac{[m,n]}{n}=|右|\),由此有\(mn=(m,n)[m,n]\)