课程笔记-环论(2022-04-27~2022-05-07)

前言:在博客建好以后将近一个月,Alicia终于想起了要在博客上写笔记的计划……

SJTU抽象代数课程环论部分的笔记

基本概念(4-27)

环的定义与性质

定义

 对于非空集合\(R\),在\(R\)上定义运算\(+\)\(\cdot\) 满足:

\((R1)\) \((R,+)\)是Abel群

\((R2)\) \((R,\cdot)\)是半群

\((R3)\) 左右分配律成立,即

\[ \forall a,b,c\in R, a\cdot(b+c)=a\cdot b+a\cdot c,(b+c)\cdot a=b\cdot a+c\cdot a \]

那么则称\((R,+,\cdot)\)为一个环(ring),简称\(R\)为环

补充说明

  1. \((R,\cdot)\) 交换,则称之为交换环,否则称非交换环。

  2. \((R,+)\)中的单位元称为0元,记为0

    \(a\)关于\(+\)的逆元称为负元,记为\(-a\)

  3. 0元、负元唯一。

  4. \((R,\cdot)\)有单位元,记为\(1_R\)(或1)(即\(\forall a\in R,a\cdot 1=1\cdot a=a\))称\(R\)是有单位元的环。(\((R,\cdot)\)为幺半群)

例子

  1. \(R=\{0\}\),称\(R\)为零环(单位元和\(0\)元均为\(0\)

  2. \((\mathbb{Z},+,\times),\) \((\mathbb{Q},+,\times),(\mathbb{R},+,\times),(\mathbb{C},+,\times)\)均成(交换)环(单位元为\(1\),零元为\(0\)

  3. \(\mathbb{F}\)上的全矩阵环:\(\mathbb{M}_n(\mathbb{F})\)关于矩阵乘法,矩阵加法作成环,不交换(单位元\(I_n\),零元为\(0\)矩阵)

  4. \(n\)的剩余类环\(\mathbb{Z}_n\):定义加法:\(\overline{a}+\overline{b}=\overline{a+b}\),定义乘法:\(\overline{a}\cdot\overline{b}=\overline{ab}\)

    1. \((\mathbb{Z}_n,+,\cdot)\)成(交换)环

    2. 零元:\(\overline{0}\),单位元:\(\overline{1}\)

  5. 整系数多项式环\(\mathbb{Z}[x]\)\(\mathbb{Z}[x]\)关于多项式的加法和乘法成(交换)环(单位元\(f\equiv1\),零元\(0\)函数)

  6. \([a,b]\)上的连续函数环:\(C[a,b]\)关于函数的加法和乘法成环

  7. 环的直和:\(R_1,\cdots,R_n\)\(n\)个环,令

    \(R=R_1\oplus R_2\oplus\cdots\oplus R_n=\{(a_1,a_2,\cdots,a_n)|a_i\in R_i,i=1,\cdots,n\}\)

    \(R\)关于逐项加法(各分量逐项按照\(R_i\)中的加法相加)和逐项乘法(各分量逐项按照\(R_i\)中的乘法相乘)成环。

    1. 显然\(R\)交换\(\Leftrightarrow\) \(R_i\)交换 \(i=1,\cdots,n\)

    2. \(R\)有单位元\(\Leftrightarrow\) \(R_i\)有单位元 \(i=1,\cdots,n\)

环的性质

\(Prop:\)\(R\)为环,则

  1. \(0\cdot a=0=a\cdot0\quad \forall a \in R\)

  2. \((-a)\cdot b=-(ab)=a\cdot(-b),(-a)\cdot(-b)=ab\quad\forall a,b\in R\)

  3. \(R\)的单位元若存在则必定唯一

  4. \(R\)的单位元若存在且\(R\)不是\(0\)环,则\(1\not=0\)

\(Proof:\)

  1. \(0\cdot a+0\cdot a=(0+0)\cdot a=0\cdot a\) 由加法消去有\(0\cdot a=0\),同理\(a\cdot 0=0\)

  2. \((-a)\cdot b+ab=(-a+a)\cdot=0\cdot b=0\) \(a\cdot(-b)+ab=a\cdot(-b+b)=a\cdot0=0\),从而\((-a)\cdot b=-(ab)=a\cdot(-b)\),从而\((-a)(-b)=ab\)

  3. 反证

  4. \(1=0\),则\(\forall 0\not=a\in R,a\cdot1=a=a\cdot0=0\),矛盾。故\(1\not=0\)

零因子

对于环\(R\),若有\(a,b\in R\quad a\not=0,b\not=0,ab=0\)

则称\(a\)\(R\)的一个左零因子,\(b\)称为\(R\)的一个右零因子

\(R\)中有左零因子和右零因子统称有零因子

\(R\)无零因子,称其为无零因子环,否则称有零因子环。

例子

\(\mathbb{F}\)上的全矩阵环:有零因子环

\(\mathbb{Z,Q,R,C}\):无零因子环

\(\mathbb{Z_6}\)\(\bar{2}\cdot\bar{3}=\bar{0}\)\(2,3\)为零因子,有零因子环

\(\mathbb{Z_5}\):无零因子环

注意:有左零因子\(\Leftrightarrow\)有右零因子,但是左(右)零因子未必是右(左)零因子,例子如下

\[ R=\{\left[\begin{array}{cc} 0 &0\\ x&y\\ \end{array}\right]|x,y\in \mathbb{R}\} \]

成环,求其零因子

解:\(\forall \left(\begin{array}{cc} 0 &0\\ x&y\ \end{array}\right)\)\(\left(\begin{array}{cc}0&0\\a&0\end{array}\right)\) \(\left(\begin{array}{cc}0 &0\\x&y\\\end{array}\right)\)=\(\left(\begin{array}{cc}0 &0\\0&0\\\end{array}\right)\)

\(\therefore R\)中每个非零元都是右零因子,且\(\left(\begin{array}{cc}0&0\\a&0\\\end{array}\right),a\not=0\)是左零因子

但是\(a\not=0\),\(\small\left(\begin{array}{cc}0&0\\*&a\\\end{array}\right)\) \(\small\left(\begin{array}{cc}0&0\\x&y\\\end{array}\right)\) \(=\left(\begin{array}{cc}0&0\\ax&ay\\\end{array}\right)=\left(\begin{array}{cc}0&0\\0&0\\\end{array}\right)\Rightarrow x=0\), \(y=0\)

\(\therefore \left(\begin{array}{cc}0&0\\x&a\\\end{array}\right)\) 不是左零因子

定理

\(R\) 中没有左(右)零因子\(\Leftrightarrow\) \(R\) 中左(右)消去成立

证明(只证明对左零因子):

\(\Rightarrow:a\not =0,ab=ac\Rightarrow a(b-c)=0 \stackrel{\because 无左零因子}{\Longrightarrow}b-c=0,b=c\)

\(\Leftarrow:\forall a\not=0,a\in R\),若\(\exists ab=0\),则\(ab=a\cdot0=0\),由左消去律有\(b=0\)

\(\therefore R\)无左零因子

单位

\(R\)有单位元\(1\) ,\(a\in R^*\)(非零元所成的集合),若\(a\)有逆元,则称\(a\)\(R\)的单位

\(U(R)=\{R中所有单位\}\)

\(\forall a,b\in U(R),ab\cdot b^{-1}a^{-1}=1\Rightarrow ab\in U(R),a^{-1}\in U(R)\)

\(U(R)\)成群,称为\(R\)的单位群

\(U(\mathbb{Z}_6)=\{\bar{1},\bar{5}\},U(\mathbb{Z}_5)=\mathbb{Z}_5^*\)

环的分类

整环

有单位元,无零因子,交换的非零环

例子:\((\mathbb{Z},+,\times),(\mathbb{Q},+,\times),(\mathbb{C},+,\times),\mathbb{Z}[x],\mathbb{Q}[x],\mathbb{C}[x],\mathbb{Z}_p(p:prime)\)

例(高斯整环)

\(\mathbb{Z}[i]=\{a+bi|a,b\in\mathbb{Z}\}\)是整环(高斯整环),求\(\mathbb{Z}[i]\)的单位

解:设\(\alpha\in\mathbb{Z[i]},\alpha\not=0,\alpha\)为单位,\(\alpha=a+bi\).

\(\exists x=x+yi\in\mathbb{Z[i]},s.t.\quad \alpha x=1\)\(|\alpha|^2|x|^2=1,i.e(a^2+b^2)(x^2+y^2)=1\)

\[ \therefore a^2+b^2=1 有 \begin{cases} a=\pm1 \\ b=0 \\ \end{cases} 或 \begin{cases} a=0 \\ b=\pm1 \\ \end{cases} \]

\(U(\mathbb{Z}[i])=\{1,-1,i,-i\}\cong\mathbb{Z}_4\)

除环(体)

\(R\not=\{0\}\) \((R^*,\cdot)\)成群,称\(R\)为除环

注:

  1. \(R\)为除环,则\(R\)至少含有\(0,1\)

  2. \(U(R)=R^*\)

例:\((\mathbb{Q},+,\times)\),\((\mathbb{R},+,\times),(\mathbb{C},+,\times)\)

例:设\(e=\left(\begin{array}{cc}1&0\\0&1\\\end{array}\right),i=\left(\begin{array}{cc}i&0\\0&i\\\end{array}\right),\small j=\left(\begin{array}{cc}0&1\\-1&0\\\end{array}\right),\normalsize k=\left(\begin{array}{cc}0&i\\i&0\\\end{array}\right)\)

\(H=\{a_0e+a_1i+a_2j+a_3k|a_i\in R,i=0,1,2,3\}\)

则有\(i^2=j^2=k^2=-e,ij=-ji=k,jk=-kj=i,ki=-ik=j\)

\(H\)对矩阵乘法和加法成环

\(\forall q\in H^*,q=\left(\begin{array}{cc}u&v\\-\bar{v}&\bar{u}\\\end{array}\right)=\left(\begin{array}{cc} a_0+a_1i & a_2+a_3i\\-a_2+a_3i & a_0-a_1i\\\end{array}\right)\) (\(a_i\)不全为0)

\(q=|u|^2+|v|^2=a_0^2+a_1^2+a_2^2+a^2_3\not=0\)

\(q\)有逆元,从而\(H\)为一个除环,非交换(实四元数环)

又称\(\text{Hamilton四元数体}\)

定理

\(R\not=\{0\}\)有限,\(R\)无左右零因子,\(R\)为除环

证明:\((R^*,\cdot)\)半群,因满足左右消去律成群,故\(R\)为除环

交换的除环(即,\((R,+),(R^*,\cdot)\)均为\(\text{Abel}\)群)

例子:如\(\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Z_p}\)

具有有限个元素的域称为有限域

定理

\(\mathbb{Z_p}\)是域\(\Leftrightarrow\) \(n\) 为素数

证明:\(\Rightarrow:\) 反证,设\(n=n_1n_2,n_1,n_2>1\) 则有\(\overline{n_1},\overline{n_2}=\bar{0}\)

\(\overline{n_1},\overline{n_2}\not=0\)\(\mathbb{Z}_n\)有零因子,与\(\mathbb{Z}_n\)为域矛盾

\(\therefore n\)为素数

\(\Leftarrow:\)\(p\)为素数,从而\(\mathbb{Z}_p\not=\{\bar{0}\}\)

\(\forall \bar{k}\in\mathbb{Z}_p^*\)\((k,p)=1\),\(\exists a,b\in \mathbb{Z}\),使得\(ak+bp=1\),有\(\bar{a}\bar{k}=\bar{1}\).

\(a\)有逆元,\(\bar{1}\in \mathbb{Z}_p\) .从而\((\mathbb{Z_p^*},\cdot)\)成群且交换,故\(\mathbb{Z}_p\)为域

注:\(\mathbb{Z}_p\)是最简单的有限域

推论

有限整环是域

子环和子域(4-29)

定义

\((R,+,\cdot)\)是一个环(域),\(\emptyset \not =S \subset R\) ,若\(S\)关于\(R\)的运算构成环(域),称\(S\)\(R\)的子环(域)。

注:

  1. 由定义,\(S\)\(R\)的子环,则\((S,+)\)\((R,+)\)的子加群。

  2. R中的0元是S中的0元,S中元的负元是在R中的负元

  3. \(S\)\(R\)的子域,则\((S,+)\)\((R,+)\)子加群,\((S^*,\cdot)\)\((R,\cdot)\)子乘群(Abel)群

定理1

\(R\)为一个环,\(\emptyset\not=S\subset R\),则\(S\)\(R\)的子环\(\Leftrightarrow\)

  1. \((S,+)\)\((R,+)\)的子加群

  2. \(\forall a,b\in S, ab\in S\)

定理2

\(R\)为一个环,\(\emptyset\not=S\subset R\),则\(S\)\(R\)的子环\(\Leftrightarrow\)

(1)\(\forall a,b\in S,a-b\in S\quad(a+b\in S,-a\in S)\)

(2)\(\forall a,b\in S, ab\in S\)

定理3

\(K\)为域,\(\emptyset\not=F\subset K\),则\(F\)\(K\)的子域\(\Leftrightarrow\)

\(\forall a,b\in F, c,d\in F^*\)\(a-b\in F,cd^{-1}\in F^*\)

如:\(\{a+b\sqrt{-1}|a,b\in \mathbb{Q}\}\subset \mathbb{C}\)\(\mathbb{C}\)的子域

\(\{a+b\sqrt{-1}|a,b\in\mathbb{Z}\}\)不是\(\mathbb{C}\)的子域

例子

例1:\(\{0\},R\)均为\(R\)的子环(平凡子环)

例2:对\((\mathbb{Z},+,\times)\),\(S=\{n\mathbb{Z}\}\)\(\mathbb{Z}\)的子环

特别的:\(2\mathbb{Z}\)\(\mathbb{Z}\)的子环,但\(2\mathbb{Z}\)没有单位元.

例3:求\(\mathbb{Z}_{18}\)的所有子环

    解:由群论已有结论\(\mathbb{Z}_{18}\)的所有子加群\(\langle\bar{1}\rangle,\langle\bar{2}\rangle,\langle\bar{3}\rangle,\langle\bar{6}\rangle,\langle\bar{9}\rangle,\langle\bar{0}\rangle\)

\(\langle\bar{1}\rangle=\mathbb{Z}_{18}\),\(\langle\bar{2}\rangle=\{\bar{0},\bar{2},\bar{4},\bar{6},\bar{8},\overline{10},\overline{12},\overline{14},\overline{16}\}\) ,\(\langle\bar{3}\rangle=\{\bar{0},\bar{3},\bar{6},\bar{9},\overline{12},\overline{15}\}\) ,\(\langle\bar{6}\rangle=\{\bar{0},\bar{6},\overline{12}\}\) ,\(\langle\bar{9}\rangle=\{\bar{0},\bar{9}\}\) 故所有的子加群即为它所有的子环,共六个.

例4:设\(R\)为环,证明\(C(R)=\{r\in R|rs=sr \quad\forall s\in R\}\)\(R\)的一个子环(称为环\(R\)的中心)

证明:\(\because 0\in C(R)\quad \therefore \emptyset\not=C(R)\subset R\)

\(\forall r_1,r_2\in C(R) \forall s\in R\)\((r_1-r_2)s=r_1s-r_2s=sr_1+s(-r_2)=s(r_1-r_2)\)

\(\therefore r_1-r_2\in C(R)\)

\(r_1r_2s=(r_1s)r_2=sr_1r_2\) \(\therefore r_1r_2\in C(R)\)

\(C(R)\)\(R\)的子环

理想,商环和环同态

理想

定义

\(R\)为环,\(\emptyset \not =I\subset R\) ,若\(I\)满足

1.\(\forall r_1,r_2 \in I\),有\(r_1-r_2\in I\)

2.\(\forall r\in I,s \in R\)\(rs,sr\in I\)

\(I\)\(R\)的一个理想(ideal).若\(I\subsetneq R\) ,称\(I\)为真理想

注:\({0}\)\(R\)\(R\)的平凡理想(trivial ideal).

例子

1.求\(\mathbb{Z}\)的全部理想

解:由前知,\(\mathbb{Z}\)的全部子环为\(\{m\mathbb{Z}|m=0,1,2,\cdots\}\)吸收性满足。所以其即为\(\mathbb{Z}\)的全部理想。

性质

定理1:

\(R\)为环,\(I,J\)都是\(R\)的理想,则\(I+J,I\cap J,IJ\)均为\(R\)的理想

证明:

(i). \(I+J=\{a+b|a\in I,b\in J\}\),\(I\cap J=\{a\in R| a\in I,a\in J\}\),\(IJ=\{\sum_{i=1}^{m}a_ib_i|a_i\in I,b_i\in J\}\)

\(I+J\)\(R\)的子加群,\(I\cap J\)\(R\)的子加群

\(\forall r\in R,\alpha \in I+J, \alpha=a+b \quad a\in I,b\in J\)

\[ r\alpha=r(a+b)=ra+rb \in I+J \]

同理\(\alpha r\in I+J\),故\(I+J\)\(R\)的理想

(ii). \(\forall \alpha \in I\cap J\quad r\alpha \in I\cap J \quad \alpha r\in I\cap J\)

\(I\cap J\)\(R\)的理想

(iii).\(\forall \alpha,\beta\in IJ\),设\(\alpha=\sum_i a_ib_i,\beta=\sum_j c_jd_j,a_i,c_j\in I, b_i,d_j\in J\)

\(\alpha-\beta=\sum_ia_ib_i-\sum c_jd_j=\sum_ia_ib_i+\sum(-c_j)d_j\in IJ\)

\(\forall r\in R\quad r\alpha=\sum_i(ra_i)b_i\in IJ,\alpha r=\sum_i a_i(b_ir)\in IJ\)

\(IJ\)\(R\)的理想

注:推广到任意有限多个,即\(\{I_i|i=1,\cdots,n\}\)均为\(R\)的理想,

\(\sum_{i=1}^n I_i,\bigcap_i I_i,\prod_{i=1}^n I_i\)均为\(R\)的理想。

\(\prod_{i=1}^n I_i\subset \bigcap_i I_i \subset I_i\subset \sum_{i=1}^n I_i\)

例子

在环\((\mathbb{Z},+,\cdot)\)中,设\(H=\{4k|k\in\mathbb{Z}\},N=\{6l|l\in\mathbb{Z}\}\),则\(H,N\)均为\(\mathbb{Z}\)的理想

\(H+N=\{4k+6l|k,l\in\mathbb{Z}\}=\{2m|m\in\mathbb{Z}\}\),

\(HN=\{\sum24kl|k,l\in\mathbb{Z}\}\),\(H\cap N=\{12k|k\in\mathbb{Z}\}\)

单环

定义

\(R\),若\(R\)没有非平凡理想,则称\(R\)为单环.

推论

\(F\)为域,则\(F\)上的全矩阵环\(M_n(F)\)是单环

证明:设\(\forall I\)\(M_n(F)\)的理想 \(I\not=\{0\}\) 则取\(A=(a_{ij})_{n\times n}\in I,A\not=0\)

不妨设\(a_{kl}\not=0\),故有\(a^{-1}_{kl}E_{ik}AE_{li}=E_{ii}\in I\),

从而\(e=E=\sum_{i=1}^n E_{ii}\in I\) ,从而由吸收性有\(\forall B\in M_n(F),B\cdot E=B\in I\)

\(I=M_n(F)\).从而\(M_n(F)\)为单环.

注:\(M_n(\mathbb{Z})\)整数环上的矩阵环就不是单环(取\(I=M_n(2\mathbb{Z})\)\(I\)\(M_n(F)\)的非平凡理想)

\(1\in I\),则\(\forall x\in R,x\cdot1=x\in I\),\(R\)是单环(由此可知柱和域都是单环).

理想的构造

主理想

\(R\)为环,\(a\in R\),令\(\Sigma=\{包含a的R的所有理想\}\).则\(\Sigma\not=\emptyset\)

\(\langle a\rangle=\bigcap_{I\in\Sigma} I\)\(\langle a\rangle\)\(R\)的理想

称为由\(a\)生成的主理想(principal ideal)

主理想的构成

定理1

\(R\)为环,\(a\in R\),则

(i).\(\langle a\rangle=\{\sum_ix_iay_i+xa+ay+ma|x_i,y_i,x,y\in R,m\in\mathbb{Z}\}\)

(ii).若\(1\in R\),则\(\langle a\rangle=\{\sum_ix_iay_i|x_i,y_i\in R\}\)

(iii).若\(R\)交换,则\(\langle a\rangle=\{xa+ma|x\in R,m\in\mathbb{Z}\}\)

(iv).若\(R\)有单位元的交换环,则\(\langle a\rangle=\{ar|r\in R\}=aR\)

证明:

(i).式子右边记为\(I\),\(\forall J\in \Sigma,x_iay_i\in J.xa,ay,ma\in J\)

\(I\subset J\)从而\(I\subset \bigcap_{J\in\Sigma} J\)

\(\forall b,c\in I\),明显地有\(b-c\in I,rb,br\in I\quad \forall r\in R\)

\(I\)\(R\)的理想(根据定义有\(\bigcap_{J\in\Sigma} J \subset I\)),\(a\in I\),从而\(I=\langle a\rangle\).

故(i)成立

(ii).若\(1\in R\),\(xa=xa\cdot 1,ay=1\cdot ay ma=m\cdot 1\cdot a=(m\cdot 1)a\cdot1\)

\(\langle a \rangle=\{\sum_i x_iay_i|x_i,y_i\in R\}\)

(iii).若\(R\)交换,则\(x_iay_i=x_iy_ia,ay=ya\)从而

\(\langle a\rangle=\{xa+ma|x\in R,m\in \mathbb{Z}\}\)

(iv).若\(1\in R,R\)交换,故有\(ma=(m1)\cdot a=(m1)\cdot a\)

从而\(\langle a \rangle=\{xa|x\in R\}=aR=Ra\)

例子:

\((\mathbb{Z},+,\cdot)\)所有理想\(\{m\mathbb{Z}\}=\langle m\rangle\)(也是主理想)

\((\mathbb{Z}_n,+,\cdot)\)所有理想\(\langle \bar{m}\rangle\) (\(m\in \mathbb{Z}_+,m|n\))(也是主理想)

一般地,若\(S=\{a_1,\cdots,a_n\}\subset R\)

\(\langle a_1,\cdots.a_n\rangle=\langle a_1\rangle+\langle a_2\rangle+\cdots+\langle a_n\rangle\) ,记为\(\langle S\rangle\)

称为由\(S\)生成的理想.

例子(5-7)

高斯整环\(\mathbb{Z}[i]\),求\(\langle 1+i\rangle\)

\(\mathbb{Z}[i]\) 有单位元的交换环,故

\(\begin{aligned}\langle 1+i\rangle&=(1+i)\mathbb{Z}[i]\\&=\{x+yi|x+yi=(1+i)(a+bi),\forall a+bi\in\mathbb{Z}[i]\}\\&=\{a-b+(a+b)i|\forall a,b\in \mathbb{Z}\}\\&=\{x+yi|x,y同奇偶\}\end{aligned}\)

例2

\(\mathbb{Z}\)中,\(a,b\in\mathbb{Z}\),求\(\langle a,b\rangle\)

解:因为\(\mathbb{Z}\)是有单位元的交换环

\(\therefore \begin{aligned}\langle a,b\rangle &=\langle a\rangle +\langle b\rangle =\{k_1a|k_1\in\mathbb{Z}\}+\{k_2b|k_2\in\mathbb{Z}\}\\&=\{kd|d=(a,b),k\in\mathbb{Z}\}\end{aligned}\)

主理想整环

整环\(D\),若\(D\)的每个理想均为主理想,称\(D\)为主理想整环,记为\(PID\)

如:\(\mathbb{Z}\),主理想整环

\(\mathbb{Z}_n\)不是主理想整环 因为\(n\)不是质数时\(\mathbb{Z}_n\)有零因子 不是整环)

商环

环上的商群

\(R\)是一个环,\(I\)\(R\)的理想,\(i.e\) \((I,+)\triangleleft(R,+)\)

商群\(R/I=\{\bar{x}=x+I|x\in R\}\)

加法:\(\bar{x}+\bar{y}=\overline{x+y}\)(已有的)

定义乘法:\(\bar{x}+\bar{y}=\overline{x\cdot y},x,y\in R\)

证明乘法well-defined:

    若\(\overline{x_1}=\overline{x_2},\overline{y_1}=\overline{y_2},x_1,x_2,y_1,y_2\in R\)

    有\(x_1-x_2\in I,y_1-y_2\in I\)

    有\(x_1y_1-x_2y_2=x_1y_1-x_1y_2+x_1y_2-x_2y_2=x_1(y_1-y_2)+(x_1-x_2)y_2\in I\)

    \(\therefore \overline{x_1y_1}=\overline{x_2y_2}\) 从而定义的乘法是\(R/I\)上的二元运算

证明\(R/I\)构成环:

\(\forall x,y,z\in R\),明显地\((\bar{x}\cdot\bar{y})\cdot\bar{z}=\overline{xy}\cdot \overline{z}=\overline{xyz}=\bar{x}\cdot\overline{yz}=\bar{x}\cdot(\bar{y}\cdot\bar{z})\)

故结合律满足

\(\bar{x}(\bar{y}+\bar{z})=\bar{x}\cdot\overline{y+z}=\overline{x(y+z)}=\overline{xy+xz}=\overline{xy}+\overline{xz}=\bar{x}\cdot\bar{z}+\bar{x}\cdot{y}\)

\((\bar{y}+\bar{z})\cdot\bar{x}=\overline{(y+z)\cdot x}=\overline{yx+zx}=\bar{y}\cdot\bar{x}+\bar{z}\cdot\bar{x}\)

分配律成立

从而\(R/I\)构成环

商环的定义

\(R/I\)为环\(R\)关于理想\(I\)的商环

如: \(\mathbb{Z}/\langle m\rangle=\mathbb{Z}_m\)

商环的性质

   设\(R\)为环,\(I\)\(R\)的理想,则

  1. \(\bar{0}=I\)\(R/I\)的零元

  2. \(R\)有单位元\(1\)\(1\not\in I\)\(\bar{1}=1+I\)\(R/I\)的单位元

  3. \(R\)为交换环,则\(R/I\)交换环

证明是显然的。

例子

1.\(\mathbb{Z}[i]\),试确定\(\mathbb{Z}[i]/\langle 1+i\rangle\)

解:\(\langle 1+i\rangle=\{x+yi|x,y同奇偶\}\)

\(\forall a+bi\in\mathbb{Z}[i]\),若\(a,b\)奇偶性相同,则\(a+bi\in\langle1+i\rangle\)(即\(\bar{0}\)

\(a,b\)一奇一偶,\(a+bi=1+a-1+bi\)\(a-1+bi\in\langle1+i\rangle\)\(\in \bar{1}\)

\(\therefore \mathbb{Z}[i]/\langle1+i\rangle=\{\bar{0},\bar{1}\}\)

2.一元多项式环\(F[x]\)\(F\)为数域

\(P(x)=a_0+a_1x+\cdots+a_nx^n,a_n\not=0\)

\(H=\langle P(x)\rangle\)\(F[x]/H\)

解:\(\begin{aligned}F[x]/H &=\{r(x)+\langle P(x)\rangle|r(x)\in F[x],deg(r(x))<n\}\\&=\{\overline{r(x)}|deg(r(x)<n\}\end{aligned}\)

环同态

定义

\(R,R'\)为两个环,\(\phi:R\rightarrow R'\) 为映射

\(\forall a,b\in R\),有

  1. \(\phi(a+b)=\phi(a)+\phi(b)\)

(2)\(\phi(a\cdot b)=\phi(a)\cdot\phi(b)\)

则称\(\phi\)\(R\rightarrow R'\)的同态映射

简称\(R\)\(R'\)的同态

注:若\(\phi\)单射,称其为单同态(嵌入)

\(\phi\)满射,称其为满同态

单&满,同构

\(R\)到自己的同态或同构称自同态/自同构

\(\phi\)为环同构且\(R\),\(R'\)均为域,称为域同构

例子

1.\(\phi:R\rightarrow R'\),\(\forall a\in R,\phi(a)=0'\in R'\)

零同态

2.\(\begin{aligned}\phi:\mathbb{Z}&\rightarrow \mathbb{Z}_m\\a&\mapsto \bar{a}\end{aligned}\)

满射

\(\phi(a+b)=\overline{a+b}=\bar{a}+\bar{b}=\phi(a)+\phi(b)\)

\(\phi(a\cdot b)=\overline{ab}=\bar{a}\cdot\bar{b}=\phi(a)\cdot\phi(b)\)

故为满同态

性质

prop:设\(\phi:R\rightarrow R'\)环同态,则

  1. \(Ker\phi\)\(R\)的理想,\(Ker\phi=\{a\in R|\phi(a)=0'\}\)

  2. \(\phi\)单同态\(\Leftrightarrow\) \(Ker\phi=\{0\}\)

  3. 满同态\(\Leftrightarrow\) \(Im\phi=R'\)

  4. \(I\)\(R\)的理想,则\(\pi: R\rightarrow R/I\) \(\pi(r)=r+I,\forall r\in R\)是满同态且\(Ker \pi=I\)

证明略(同群论)

例子

1.设\(R=Q[x],R'=Q(\sqrt2)=\{a+b\sqrt2|a,b\in Q\}\)

\(\begin{aligned}\phi:R&\rightarrow R'\\f(x)&\mapsto f(\sqrt2)\end{aligned}\) 证明\(\phi\)为满同态并且\(Ker \phi=\langle x^2-2\rangle\)

解:

\(f(\sqrt2)\)唯一确定,知\(\phi\)为映射

\(\forall a+b\sqrt2\in R'\) ,有\(a+bx\in R=Q[x],s.t.\) \(\phi(a+bx)=a+b\sqrt2\)

\(\phi\)为满射

\(\forall f(x),g(x)\in Q[x]\),\(\begin{aligned}\phi(f(x)+g(x))&=f(\sqrt2)+g(\sqrt2)\\&=\phi(f(x))+\phi(g(x))\end{aligned}\)

\(\phi(f(x)\cdot g(x))=f(\sqrt2)g(\sqrt2)=\phi(f(x))\phi(g(x))\)

\(\phi\)为满同态

\(\forall f(x)\in Ker\phi,\phi(f(x))=0\)

\(f(x)=(x^2-2)q(x)+a+bx,\phi(f(x))=f(\sqrt2)=a+b\sqrt2=0\)

\(\therefore a=b=0,(x^2-2)|f(x)\)

另一方面,\(\forall f(x)=(x^2-2)q(x),\phi(f(x))=0\)

\(\therefore Ker\phi=\langle x^2-2\rangle\)

2.prop:\(\phi:\bar{1}\rightarrow \bar{a}\)\(\mathbb{Z}_m\)\(\mathbb{Z}_n\)的同态\(\Leftrightarrow\) \(m\bar{a}=\bar{0}\)\({\bar{a}}^2=\bar{a}\)

证明:

\(\Rightarrow:\) \(\because \mathbb{Z}_m=\langle\bar{1}\rangle\)

\(\therefore \phi(m\cdot\bar{1})=m\phi(\bar{1})=m\bar{a}=\phi(\bar{m})=\phi(\bar{0})=\bar{0}\)

\(\phi(\bar{1}\cdot\bar{1})=\phi(\bar{1})=\phi(\bar{1})\phi(\bar{1})={\bar{a}}^2=\bar{a}\)

\(\Leftarrow:\) \(\begin{aligned}\phi:\mathbb{Z}_m&\rightarrow\mathbb{Z}_n\\\bar{x}&\mapsto\phi(\bar{x})=\phi(x\cdot\bar{1})=x\bar{a}\end{aligned}\)

\(\mathbb{Z}_m\)中若\(\bar{x}=\bar{y}\) 则有\(m|x-y\)\(m\bar{a}=\bar{0}\)

\((x-y)\bar{a}=0\)\(n|(x-y)\bar{a}\),即\(n|x\bar{a}-y\bar{a}\)

\(x\bar{a}=y\bar{a}\) 所以\(\phi\)为映射

\(\begin{aligned}\forall \bar{x},\bar{y}\in\mathbb{Z}_m,\phi(\bar{x}+\bar{y})&=\phi(\overline{x+y})=(x+y)\bar{a}\\&=\phi(\bar{x})+\phi(\bar{y})\end{aligned}\)

\(\begin{aligned}\phi(\bar{x}\cdot\bar{y})&=\phi(\overline{xy})=xy\bar{a}=xy\bar{a}^2=x\bar{a}\cdot y\bar{a}\\&=\phi(\bar{x})\cdot\phi(\bar{y})\end{aligned}\)

\(\phi\)为同态

3.求\(\mathbb{Z}_4\)\(\mathbb{Z}_{12}\)的所有环同态

\(\begin{aligned}\phi:\mathbb{Z}_4&\rightarrow\mathbb{Z}_{12}\\\bar{1}&\mapsto\bar{a}\end{aligned}\)

\(\mathbb{Z}_{12}\)\(4\bar{a}=\bar{0},\bar{a}^2=\bar{a},\therefore \bar{a}=\bar{0},\bar{9}\)

\(\mathbb{Z}_4\)\(\mathbb{Z}_{12}\)的所有环同态为\(\phi_1(\bar{x})=\bar{0},\phi_2(\bar{x})=9\bar{x}\)

环同态基本定理

同态基本定理

\(f:R\rightarrow R'\)是环同态,则有环同构\(R/Kerf\cong Imf\)

特别的,若\(f\)为满同态,则有\(R'\cong R/Ker f\)

证明:

由同态基本定理,有:

\(\begin{aligned}\phi:R/Kerf&\rightarrow Imf\\\bar{a}&\mapsto f(a)\end{aligned}\) 为群同构

\(\forall \bar{a},\bar{b}\in R/Ker f\)\(\begin{aligned}\phi(\bar{a}\cdot\bar{b})&=\phi(\overline{ab})=f(ab)=f(a)f(b)\\&=\phi(\bar{a})\phi(\bar{b})\end{aligned}\)

\(\phi\)为环同构,即\(R/Ker f\cong Imf\)

例子

1.\(\begin{aligned}\phi:\mathbb{Z}&\rightarrow \mathbb{Z}_m\\a&\mapsto\bar{a}\end{aligned}\) 满同态,\(Ker\phi=\langle m\rangle\)

\(\mathbb{Z}/\langle m\rangle\cong Im\phi =\mathbb{Z}_m\)

2.\(\begin{aligned}\phi:Q[x]&\rightarrow Q(\sqrt2)\\f(x)&\mapsto f(\sqrt2)\end{aligned}\)

\(Ker\phi=\langle x^2-\sqrt2\rangle\)

\(Q[x]/Ker\phi\cong Q(\sqrt2)\)

3.\(I\)为环\(R\)的理想\(\begin{aligned}\phi:M_n(R)&\rightarrow M_n(R/I)\\ (a_{ij})_{n\times n}&\mapsto (\overline{a_{ij}})_{n\times n}\end{aligned}\)满同态

\(Ker\phi=\{(a_{ij})_{n\times n}|a_{ij}\in I\}=M_n(I)\)

\(M_n(R)/M_n(I)\cong M_n(R/I)\)

如:\(R=\mathbb{Z},I=2\mathbb{Z}\)

同构定理

第一同构定理:设\(S\)\(R\)的子环,\(I\)为环\(R\)的理想,则\(I+S\)\(R\)的子环,\(I\cap S\)\(S\)的理想,且\(I+S/I\cong S/I\cap S\)

子环对应定理:设\(I\)是环\(R\)的理想,令\(\text{T}=\{S为R的子环|I\subset S\}\\\Omega=\{R/I的子环\}\)

\(\Phi:\text{T}\to\Omega\)是双射,其中\(\Phi(S)=S/I,\forall S\in \text{T}\),特别的,\(R/I\)中任意子环形如\(S/I,I\subset S\)(S为R的子环)

第二同构定理:设\(J\)也是\(R\)的理想且\(I\subset J\),则\(J/I\)\(R/I\)的理想,且有环同构\((R/I)/(J/I)\cong R/J\)

证明均类似群的证明。

例子

\(\mathbb{Z}\)中,\(m,n\in\mathbb{Z}\), \(I=\langle m \rangle,s=\langle n\rangle\)

\(I+S=\langle m\rangle+\langle n\rangle=\langle (m,n)\rangle\),\(I\cap S=\langle[m,n]\rangle\)

\((I+S)/I\cong S/(I\cap S)\),即\((m,n)\mathbb{Z}/m\mathbb{Z}\cong n\mathbb{Z}/[m,n]\mathbb{Z}\)

\(m=4,n=6\)

左边\(=\{\bar{0},\bar{2}\}\),右边\(=\{\bar{0},\bar{6}\}\)

\(|左|=\frac{jm}{(m,n)}=\frac{[m,n]}{n}=|右|\),由此有\(mn=(m,n)[m,n]\)


课程笔记-环论(2022-04-27~2022-05-07)
https://blog.alicelab.uk/2022/04/29/Ring_Theory_1/
作者
Alice Lin
发布于
2022年4月29日
许可协议